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Width of percolation transition in complex networks
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It is known that the critical probability for the percolation transition is not a sharp threshold. Actually it is
a region of nonzero width Ap,. for systems of finite size. Here we present evidence that for complex networks
Ap.~p.l€, where £ ~N"ort is the average length of the percolation cluster, and N is the number of nodes in
the network. For Erdds-Rényi graphs v,,=1/3, while for scale-free networks with a degree distribution
P(k)~k™ and 3<\<4, v,,=(\=3)/(\—1). We show analytically and numerically that the survivability
S(p,€), which is the probability of a cluster to survive € chemical shells at probability p, behaves near
criticality as S(p,€)=S(p.,€)exp[(p—p.)€/p.]. Thus for probabilities inside the region |p—p.|<p./€ the
behavior of the system is indistinguishable from that of the critical point.
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I. INTRODUCTION

Recently the subject of networks has received much atten-
tion. It was realized that many real world systems, such as
the Internet, can be successfully modeled as networks. Other
examples include social networks such as the web of social
contacts, and biological networks such as the protein inter-
action network and metabolic networks [1-3]. The problem
of percolation on networks has also been studied extensively
(e.g., [4]). Using percolation theory we can describe the re-
silience of the network to a breakdown of sites or links [5,6],
epidemic spreading [7,8], and properties of optimal paths [9].

A typical percolation system consists of a d-dimensional
grid of length L, in which the nodes or links are removed
with some probability 1—p, or are considered “conducting”
with probability p (e.g., [10,11]). Below some critical prob-
ability p. the system becomes disconnected into small clus-
ters, i.e., it becomes impossible to cross from one side of the
grid to the other by following the conducting links. Percola-
tion is considered a geometrical phase transition exhibiting
universality, critical exponents, upper critical dimension at
d=6, etc. It was noted by Coniglio [12] that for systems of
finite size L the transition from a connected to disconnected
state has a width Ap,.~ L™"”, where v is a critical exponent
related to the correlation length.

Percolation on networks was studied also from a math-
ematical viewpoint [4,13]. It was found that in Erdés-Rényi
(ER) graphs with an average degree (k) the percolation
threshold is p.=1/({k). Below p, the graph is composed of
small clusters (most of them trees). As p approaches p, trees
of increasing order appear. At p=p. a giant component
emerges and loops of all orders abruptly appear. However,
for graphs of finite size N the percolation threshold has a
finite width Ap.~N~'3 [13], meaning that all attributes of
criticality are present in the range p € [p.—Ap.,p.+Ap.].
For example: the number of loops is negligible below
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In this paper we study the survivability of the network
near the critical threshold. The survivability S(p,€) is de-
fined to be the probability of a connected cluster to “survive”
up to € chemical shells in a system with conductance prob-
ability p [14] (i.e, the probability that there exists at least one
node at chemical distance € from a randomly chosen node on
the same cluster). At the critical point p,, the survivability
decays as a power law: S(p.,€)~ €, where x is a universal
exponent. Below p,. the survivability decays exponentially to
zero, while above p, it decays (exponentially) to a constant.
Here we will derive analytically and numerically the func-
tional form of the survivability above and below the critical
point. We will show that near the critical point S(p,€)
=S(p..€)expl(p—p.)t/p.]. Thus, given a system which has a
maximal chemical length ¢ at the percolation threshold, for
probabilities inside the range |p—p.| <p./€ the behavior of
the system is indistinguishable from that of the critical point.
Hence we get Ap.~p, /<.

The maximal chemical length ¢ at the critical threshold,
i.e., the length of the percolation cluster, was found to be
£ ~ N [9], where N is the number of nodes in the network.
For Erdés-Rényi (ER) graphs v,,=1/3, while for scale-free
(SF) networks with a degree distribution P(k)~k™ and
3<N<4, vy =(N=3)/(A=1).

II. GENERAL FORMALISM

Consider a random graph with a degree distribution P(k),
i.e., a randomly chosen node has a probability P(k) to have k
links. The probability to reach a node of degree k by follow-
ing a randomly chosen link is P,(k)=kP(k)/{k) [15] where
(k) is the average degree. Accordingly, we write the two
corresponding probability generating functions (e.g., [8,15])

petApe [20] Go(x) = 3, Pt (1)
k=0
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where G, (x) describes the probability that a node reached by
following a random link has k outgoing links, not including
the incoming link. For example, in ER graphs, G(x)
=G1(x)=e<k>(x‘l).

After randomly removing a fraction 1-p of the links
(bond percolation), the probability for a randomly chosen
node to have k remaining links in the diluted graph is given

by [6]

G(x) = =2 Py, (2)
k=1

- - k
P(k) = 2, P(ko)( 0)1)"(1 - p)o®. (3)
ko=k k
The corresponding probability generating functions éo(x)
=Ef=013(k)xk and G(x)==7_ P,(k)x*"" in the diluted graph
are

Golx) = E[E P(ko)< )k<1—p)<’<o-k>]xk

k=0 | ko=k

—EP(kO)E( )(xp) (1-p)tkod

ky=0

oo

= 2 Plkg)(1=p+px)fo=Go(1-p+px), (4)

ko=0
and [8,15]
G = S0 _pGUmptp) oy Ly (s)
Go(1) pGy(1)

For example, in ER graphs, Go(x)=G,(x)=e®U-p+pal-D
— Opl-1),

We next define M (x)=mg+m;x+myx>+- - to be the gen-
erating function for the number of sites that exists on layer
(i.e., chemical shell) ¢ starting from a random node on the
diluted graph, and N(x)=ny+n,x+n,x*+--- to be the corre-
sponding function for the number of sites that exists on layer
€ from a node reached by following a random link. In order
to find M, (x) for some layer L>1 we can write the follow-
ing recursive relations [15,16]:

N,(x) =G, (x), (6)
for 1s¢{<L-1,

Near() = Gi(No(x), (7)

and similarly, for the final layer,

M (x) = Go(N,_, (x)). (8)

Equation (7) means that the probability n§€+1) for reaching
a branch having i nodes at layer €+1 is composed of the
probability of reaching a node by following a link, and then
reaching i nodes at layer € by following all possible branches
emerging from that node (see sketch in Fig. 1).
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FIG. 1. A graphical sketch of the recursion relation (7). The
probability to reach a branch having i nodes at layer €+1 may be
represented as the sum of probabilities to reach a single node, to
reach a node connected to a single branch having i nodes at layer €,
to reach a node connected to two branches having a total of i nodes
at layer ¢, etc. (see Sec. II).

As a simple demonstration, let us evaluate the probability

ff”) to encounter zero nodes at layer €+1 of a branch.

Taking the zeroth power in Eq. (7) we have n(€+l)—P (1)

+ﬁ1(2)ng€)+13,(3)[nf)€)]2+‘ -+, which means that the probabil-
ity to reach zero nodes at layer €+ 1 (by following a link) is

composed of the probability P 1(1) to reach a node with no

emerging branch, the probability ﬁl(Z)nff) to reach a node
that has a single emerging branch with zero nodes at layer ¢,

the probability 51(3)[nf)€)]2 to reach a node having two
branches such that both of them have zero nodes at layer €,
etc. (see Fig. 1). Similarly, Eq. (8) refers to M,(x), which
gives the probability for the number of nodes at layer L
reached by starting from a random node, rather than by fol-
lowing a random link [15].

Notice that M,;(0)=m is the probability that there are
zero nodes at layer L from a random node, i.e., the probabil-
ity to die before layer L. Thus €, =1-M,(0) is the probabil-
ity to survive up to layer L. Similarly, €,=1-N,(0) (where
1<{€=<L-1) is the probability for a branch to survive up to
layer €. From Eq. (7) we have

Ni41(0) = G, (N(0)) 9)

I—€pyy =él(1
Thus for I<S€<L-1,

-€)=G(1-p+p[l-¢] (10

€1=1-G(1-pe), (11)
and for the final layer L, we have [Eq. (8)],
e,=1-Go(l -pe,_y), (12)

which gives the survivability at layer L [16].

III. ERDOS-RENYI GRAPHS
For ER graphs, Gy(x)=G,(x)=e®>=D and Eq. (11) gives

€rp = 1 — eOUPed-D) _ | _ gpibeg
2 2
=1-|1-plk)e, + <2>62
2 2
P pk)
=€ — ¢ > (13)
Pe 2
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FIG. 2. (Color online) (a) The survivability S(p,€) for an ER
graph with (k)=35, numerically calculated for different values of p:
Per PexSX1074, p 3 X 1074, p.x£1X 1074, p,+6.66X 1073, and
P.+3.33X 1073, For p=p, the survivability decays to zero accord-
ing to a power law: S(p,.,€)~ €. For p<p,, S(p,€) — 0, while for
p>pe S(p,€)—const. The decay is exponential (to zero or to a
constant) according to Egs. (16) and (17). (b) Scaling of the
survivability for different values of p, €, and (k). Shown is
[S(p,€)=S(p,»)1/S(p..€) vs |p—p.|€/p. for ER graphs with (k)
=5 (unfilled symbols) and (k)=10 (filled symbols). The collapse of
all curves on an exponential function (for large €) supports the
scaling relations (16) and (17).

where p.=1/(k). Substituting 6=p—p,, we get

pe+d (K)? s
€€+1=—fe—(l%+5)27‘~‘%+ TE &t e -

c

.

(14)

N | =

Cc

where we have left only terms of second order in €,, 6 [21].
We thus get

dE(g

o
T, €%+_E€. (15)

c

0| =

= €T €=

At criticality, 6=0 and the solution to this equation is €,
~{¢~!. The additional term suggests the following solution
near criticality e,~¢'exp(8¢/p.). Note that for ER graphs
Eqgs. (11) and (12) are the same, and thus the survivability €,
at the final iteration also has the same form ¢
~ L 'exp(SL/p,.). The above result can be written as

S(p,f)=S(Pc-,€)eXp<pl(P—Pc)€>. (16)

c

In order to check this result we numerically calculated the
survivability S(p,€) near p,. according to the recursive
relations (11) and (12).

Figure 2(a) shows the survivability S(p,€) for different
values of p. For p=p, the survivability decays as a power
law, while above and below there is an exponential decay,
either to zero (for p<<p,) or to a constant (for p > p,_). Figure
2(b) shows that all curves of the survivability S(p,€) from
(a) can be rescaled such that they all collapse. Moreover,
scaled survivabilities from all different graphs with different
values of (k) (i.e., different values of p,) also collapse on the
same curve. However, Eq. (16) is true only below the perco-
lation threshold where there is no giant component. Above
the percolation threshold there is an exponential decay to a
nonzero constant, and the generalized expression is
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FIG. 3. (Color online) (a) The survivability S(p,€) for a SF
network with A=3.5, numerically calculated for different values of
P: Per Pex6X 1072, p 4 X 1072, p 2% 1072, p.£1.33% 1072, and

.£6.66 X 1073, For p=p, the survivability decays to zero accord-
ing to a power law: S(p,.,€)~ €2 For p # p,, S(p,€) decays expo-
nentially (to zero or to a constant) according to Egs. (16) and (17).
(b) Scaling of the survivability for different values of p, €, and \.
Shown is [S(p,€)=S(p,*)]/S(p..€) vs |p—pc€/p. for SF graphs
with N\=3.5 (filled symbols) and N\=5 (unfilled symbols). For all
cases m=2. Due to numerical difficulties only curves with p<p,
are shown.

1
S(p,€)=S(pc,€)e><p(—p—|p—pc|€> + P, (17)

where P, is the probability for a randomly chosen site to be
inside the percolation cluster [22]. Indeed, setting €, =€, in
the recursive relation €;,;=1—e7®¢, the resulting “steady
state” solution is €,=P,, [13].
IV. SCALE-FREE GRAPHS
Scale-free graphs can be taken to have a degree distribu-
tion of the form P(k)=ck™, where c=(\-1)m*"! and m is

the minimal degree [6]. In order to solve Eq. (11) we have to
evaluate

1
Gil-pe) =5 2 kP(k)(1 - pe)) . (18)

Expanding by powers of €, and inserting P(k)=ck™ with 3
<A<4, we get [17,18,23]

S kPER)(1 - 5 = (k) (k(k— 1)) e+ %r(4 N2,
(19)

Thus Eq. (11) becomes

cn=1- <17> (8) = (k= Dhper+ ST =N (e
= %e« - ﬁm —Np2 (20)

where p.=(k)/{k(k—1)) [6]. Taking p=p.+ 5, and substitut-
ing A= (c/2<k>)I‘(4—)\)pZ‘_2, we get
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pct9d ¢ A2 A2
PO ), + 92
€041 P. €¢ 2k) ( )P+ 0) ¢

S S A2
=E€+_E€—A(1+_) 62_2

Pe Pe

2, 0 -2
~e—-Ae T+ —[e,—AN-2)€) 7] (21)
Pe

For large €, €,<<1. Taking into account that A—2>1 we
have e)g_2< €. Therefore,

@% E{/+l—€(g=—A€?_2+éE(. (22)

de .
For =0 the solution is €,~ €™ with x=1/(A-3). The addi-
tional term suggests the following solution near criticality,
€.~ "exp(8€/p,.). The last iteration [Eq. (12)] can be
shown to give the same behavior for €;. A similar form can
be found also for N >4 [24]. The scaling form for SF net-
works is confirmed by numerical simulations as shown in
Figs. 3(a) and 3(b).

V. SUMMARY AND CONCLUSIONS

We have shown analytically and numerically that the sur-
vivability in ER and SF graphs scales according to Egs. (16)
and (17) near the critical point. Thus, the scaling form of the
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survivability near the critical probability obeys the following
scaling relation (for p<p,)

S(p.0) = S(pc,e)exp<p A_: ) : (23)

where Ap.=p./€. Given a system with a maximal chemical
length € at criticality, for all values of conductivity p inside
the range [p.—Ap.,p.+Ap.], the survivability behaves simi-
lar to the power law S(p,,€) ~ €~ found at p=p,. Thus, the
width of the critical threshold is Ap.=p./€, where € is
the chemical length of the percolation cluster. For ER
graphs, €~N'3, while for SF networks with 3<\<4,
£ ~ NO=3/0-1).
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